Current:Home > StocksResearchers find a tiny organism has the power to reduce a persistent greenhouse gas in farm fields -TradeCircle
Researchers find a tiny organism has the power to reduce a persistent greenhouse gas in farm fields
View
Date:2025-04-17 12:32:12
In the world of greenhouse gas emissions, carbon dioxide gets most of the blame. But tiny organisms that flourish in the world’s farm fields emit a far more potent gas, nitrous oxide, and scientists have long sought a way to address it.
Now some researchers think they’ve found a bacteria that can help. Writing in this week’s Nature, they say extensive lab and field trials showed the naturally derived bacteria reduced the nitrous oxide without disrupting other microbes in the soil. It also survived well in soil and would be relatively cheap to produce.
“I think that the avenue that we have opened here, it opens up for a number of new possibilities in bioengineering of the farmed soil,” said Lars Bakken, a professor at the Norwegian University of Life Sciences and one of the authors of the study.
A pound of nitrous oxide — better known as laughing gas, the stuff that relaxes people in the dentist’s chair — can warm the atmosphere 265 times more than a pound of carbon dioxide, and it can persist in the atmosphere for more than a century. Farmers’ heavy use of nitrogen fertilizer drives up the amount produced in soil, and in 2022 it accounted for 6% of all U.S. greenhouse gas emissions from human activities, according to the Environmental Protection Agency.
Reducing fertilizer use can help, but crop yields would eventually fall.
That’s a big problem in agriculture, “so the fact that they have developed a unique strategy to reduce it pretty dramatically was really interesting,” said Lori Hoagland, a professor of soil microbial ecology at Purdue University who was not involved in the study.
This June 13, 2007, photo shows corn being grown to produce ethanol, in a field in London, Ohio. (AP Photo/Kiichiro Sato, file)
Bakken and his colleagues used organic waste to grow their bacteria, reasoning that many farmers already apply processed manure-based fertilizers so it could be easily integrated into their routines. Building on past work, they searched for a microorganism that would last long enough to make a real dent in nitrous oxide emissions without staying in the soil so long that it disrupted other tiny life forms that are often vital for crop health.
In field trials, they used roving robots to measure nitrous oxide emissions day and night, comparing conditions in soil with and without the bacteria. They found the bacteria reduced the nitrous oxide emissions of an initial fertilizer application by 94%, and a couple weeks later, dropped the emissions of a subsequent fertilizer application by about half. After about three months, there was no difference in the makeup of microbial life forms, suggesting their bacteria wouldn’t disrupt the soil.
The bacteria they settled on — Cloacibacterium sp. CB-01 — is found naturally in anaerobic digesters, machines that are already being used to transform organic waste products like cow manure into biofuels. The fact that the bacteria is not genetically modified might ease its acceptance and adoption, said Paul Carini, a soil microbiologist at the University of Arizona who was also not involved in the research.
Bakken said the bacteria could be included in certain fertilizers on farms as soon as three to four years from now if the economics make sense.
Carini thinks they do.
“Any time you’re using a waste product from one industry to benefit another industry, that’s pretty cost effective,” he said.
However, Bakken pointed out that farmers aren’t paid for reducing nitrous oxide emissions, and he thinks there have to be more incentives to do so. “The task for the authorities is to install policy instruments that makes it profitable in one way or another,” he said.
Hoagland, the Purdue professor, said more research in field conditions would likely be needed before the bacteria could be deployed worldwide, as there are many different types of farm soils.
“If they can get this to work across soils and things, it would just have a tremendous impact, for sure,” she said.
It’s a challenge that has long vexed academics as well as major agricultural companies that have tried to develop organisms that can be added to the soil for beneficial effect, Carini said. He said that where many inquiries in this direction have been spotty, this one had clearer results.
Like Hoagland, he said more work is needed to prove the bacteria’s effectiveness. But he called the work a blueprint for selecting beneficial organisms that can be added to soil.
“I think this is the next frontier in soil agriculture research,” he said.
___
Follow Melina Walling on X: @MelinaWalling.
___
The Associated Press’ climate and environmental coverage receives financial support from multiple private foundations. AP is solely responsible for all content. Find AP’s standards for working with philanthropies, a list of supporters and funded coverage areas at AP.org.
veryGood! (8)
Related
- Megan Fox's ex Brian Austin Green tells Machine Gun Kelly to 'grow up'
- Suspension of security clearance for Iran envoy did not follow protocol, watchdog says
- Couple rescued by restaurant staff after driving into water at South Carolina marina
- 3 dead in wrong-way crash on busy suburban Detroit highway
- All That You Wanted to Know About She’s All That
- Into the Fire’s Cathy Terkanian Denies Speculation Vanessa Bowman Is Actually Aundria Bowman’s Daughter
- You Have 1 Day Left To Get 40% off Lands’ End Sitewide Sale With Fall Styles Starting at $9
- Where is 'College GameDay' for Week 4? Location, what to know for ESPN show
- 'Most Whopper
- 'World-changing' impact: Carlsbad Caverns National Park scolds visitor who left Cheetos
Ranking
- Cincinnati Bengals quarterback Joe Burrow owns a $3 million Batmobile Tumbler
- Ukraine boxing champion Oleksandr Usyk released after brief detention in Poland
- Sean ‘Diddy’ Combs’ indictment alleges he used power to build empire of sexual crime
- Heather Gay Reveals RHOSLC Alum's Surprising Connection to Secret Lives of Mormon Wives Star
- Newly elected West Virginia lawmaker arrested and accused of making terroristic threats
- Kentucky governor bans use of ‘conversion therapy’ with executive order
- After shooting at Georgia high school, students will return next week for half-days
- Harvey Weinstein set to be arraigned on additional sex crimes charges in New York
Recommendation
Skins Game to make return to Thanksgiving week with a modern look
Dancing With the Stars' Jenn Tran Shares How She's Leaning on Jonathan Johnson After Breakup
Bowl projections: Tennessee joins College Football Playoff field, Kansas State moves up
Alumni of once-segregated Texas school mark its national park status
Angelina Jolie nearly fainted making Maria Callas movie: 'My body wasn’t strong enough'
Who's that baby hippo on your timeline? Meet the wet, chubby 'lifestyle icon' captivating the internet
Tori Spelling Reveals If She Regrets 90210 Reboot After Jennie Garth's Comments
Ringo Starr guides a submarine of singalongs with his All Starr band: Review